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• All ellipticals have old metal-rich stellar populations with 
zform>2 making up 1/2 - 3/4 of all stars (E llis, Bell, Thomas etc.).

• Direct observations of massive galaxies at high redshift 
(e.g. Kriek et al. 2006, van Dokkum et al. 2008).

• Follow tight scaling relations (Colour-Magnitude relation, 
the Fundamental plane (σ0, S beff, reff).

• All early-type galaxies have BHs (e.g. Magorrian et al. 1998, 
Gebhardt et al. 2000, Merritt et al. 2000, Tremaine et al. 2002). 

• Most massive ellipticals formed earlier and on shorter 
timescales (e.g. Heavens et al. 2004, Thomas et al. 2005).

• Total stellar mass in elliptical galaxies grows since z=1 
which is only not caused by star formation or fading of 
bright blue galaxies -> dry mergers (Bell et al.,  2004, Drory et al. 
2004, Conselice et al. 2005, Faber et al. 2006, Brown et al. 2007).  

Why study Early-type galaxies?



Observational results

1. Galaxy bimodality: 
Mcrit,*~3x1010 Msun, above red 
spheroidal systems, below blue, 
star-forming disk galaxies (e.g. 

Baldry et al. 2004).

2. Downsizing: massive galaxies 
already at place at z~2-3, 
implying rapid growth of massive 
ellipticals at high-z (e.g. Glazebrook 

et al. 2004).

3. Compact sizes at z~2: Very 
compact (re~1 kpc) massive 
(M>1011 Msun) galaxies, 
smaller by a factor of 3-5 
compared to their local 
analogues at z=0 (e.g. van 
Dokkum et al. 2008).



Numerical simulations of galaxy formation

Boxy slowly-rotating E s 
Cosmological 
simulations:  

Disky fast-rotating 
E s
Merger simulations:  

Naab et al. 
(2006)

Naab, Johansson et al. 
(2007)



Our simulation samples

• A large ensemble of zoomed simulations run of individual 
elliptical galaxies using the multiparallel TreeS PH code 
Gadget-2.

• Code includes primordial gas cooling and star formation 
matched to reproduce the local S chmidt-Kennicutt relation.

• S ample 1: 3 galaxies at high (0.25 kpc) + 1 galaxy at ultra-
high (0.125 kpc) resolution without S NII feedback (Naab et al. 
2007, Johansson et al. 2009).

• S ample 2: 7 galaxies at high (0.25 kpc) + 2 galaxies at ultra-
high (0.125 kpc) resolution with S NII feedback (Johansson et al. 
2010).

• S ample 3: 40 galaxies at medium (0.4 kpc) with S NII 
feedback (Oser, Ostriker, Naab, Johansson, Burkert, 2010).

• The instantaneous S NII feedback is modelled using a 
subgrid multiphase model (S pringel&Hernquist 2003), which adds 
pressure to starforming gas particles. No additional S N wind 
or AGN feed-back is included.



Two-phased formation history of galaxies
 

• The stellar mass of the 
simulated galaxies is formed in 
two distinct components: In-situ 
within the galaxy 
(r<rgal=rvir/10) and ex-situ 
outside (r>rgal).

• In-s itu: Dominant at 2<z<6, 
driven by cold gas flows, super-
solar metallicity, energetically 
dissipative.

• Ex-situ: Dominant at 0<z<3 
driven by minor & major 
mergers, sub-solar metallicity, 
energetically conservative.

S ignifican
t
ex-situ.

S ignifican
t
in-situ.

~Equal 
ex-situ & 
in- s itu.

Oser et al. 
(2010)



Theory I: Red & dead ellipticals
 

• The simulations produce red 
& dead ellipticals with red 
colours, some with colours 
redder than the ERO limit of 
R -K>5.0 & I-K>4.0.

• Magnitudes calculated using 
Bruzual&Charlot (2003) S S P 
using a S alpeter IMF and 
solar metallicity. 

• No correction for obscuration 
yet, a simple Charlot&Fall 
(2000) model will obscure 
some light from τ<107 yr stars 
making the galaxies even 
redder.



• Temperature of the diffuse 
gas is increasing in all 
simulations with decreasing 
redshift.

• Transition from cold to hot 
accretion at z~2-3 at M~3-
5x1011 Msun.

• The cooling time is shorter 
than Hubble time, still T is 
increasing.

• At low redshifts only high 
entropy gas remains, hot 
gas fraction is >97% .

• In these simulations no S N 
feedback! What is heating 
the gas?

Terminating S F by gravitational feedback

No S N 
feedback!S ee also Birnboim, Dekel 

2008



Heating of the gas component

• Egrav~m*vc2 unlike 
ES N and EAGN 
which are both 
proportional to m*. 
Egrav dominates for 
massive galaxies 
with high vc. 

• S hock-heating of the 
diffuse gas 
dominates at all 
redshifts, but 
especially at z<3, 
when the galaxies 
are massive enough 
to support stable 
shocks.



Heating of the DM component

• The DM is initially 
adiabatically 
contracted at z~3, 
after which the 
central DM mass is 
decreasing for 
haloes A and C  
(dissipationless 
formation).

• Halo E  has constant 
DM mass as a 
function of z 
(dissipational 
formaion).

Results need to be confirmed in 
simulations 
including S N feedback. 



Theory II: Downsizing 

• Galaxies assemble rapidly at high-z through in-situ star 
formation, later stellar assembly dominated by accreted ex-
situ stars, with accretion being more dominant for more 
massive systems. 



S tar formation rates & Ages of galaxies 
 

• S tar formation 
rates large at high-
redshift during in-
situ formation 
phase. Below z<2 
in general very low 
S FRs, growth 
dominated by dry 
merging.

• Old stars, with 
accreted population 
being older than 
the insitu. Most 
massive galaxies 
have highest 
fraction of accreted 
stars->oldest ages 
as observed. 



•In-s itu stars form a 
compact high 
density stellar 
system, with 
r1/2=1-2 kpc. 

•Accreted stars are 
building up a more 
extended lower 
mass system, 
r1/2=3-5 kpc.  

Theory III: S ize growth through minor dry 
merging



S ize growth continued

• Most massive systems 
have, facc=75% , size 
growth z=3->z=0, x8.5.

•Intermediate massive 
systems, facc=60% , size 
growth z=3->z=0, x6.5.

•Galaxies in lowest mass 
bin, facc=45% , size 
growth z=3->z=0, x5.5.



Conclusions

• We present a two phased model of massive galaxy 
formation with in-situ star formation dominating at high-
z and accretion of ex-situ formed stars through dry 
minor merging at low-z. 

• 1) Bi-modality: Energy release from gravitational 
feedback is an important component naturally included 
in numerical simulations and could help make massive 
galaxies red and dead.

• 2) Downsizing: Massive galaxies form stars in-situ 
rapidly at high redshifts, and later accrete substantial 
amounts of ex-situ stars that were formed in smaller 
subunits. 

• 3) S ize evolution: Minor dry mergers can potentially 
explain the strong size evolution of E lliptical galaxies 
from z=2->0.

• A caveat remains in explaining the low baryon 
conversion factors, which probably requires strong 
supernova wind feedback.



Caveat: Baryon conversion factor

• Baryon conversion 
factor:      f=M*/
(fb*mvir,DM), where 
fb=Ω b/Ω m=0.2.

• Our simulated 
conversion factor is too 
large by a factor of two 
-> too much stars for 
given halo mass. 

• Missing physics: 
S upernova winds at 
lower masses & AGN 
feedback at higher 
masses.

• S lope at high masses 
set by gravitational 
heating.

Lines : φ(L)-n(DM) 
Guo et al.
Moster et al.


	Slide 1
	Why study Early-type galaxies?
	Slide 3
	Numerical simulations of galaxy formation
	Our simulation samples
	Slide 6
	Theory I: Red & dead ellipticals
	Terminating SF by gravitational feedback
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

